noparama  v0.0.1
Nonparametric Bayesian models
Public Member Functions | Protected Member Functions | List of all members
MCMC Class Reference

#include <np_mcmc.h>

Public Member Functions

 MCMC (std::default_random_engine &generator, InitClusters &init_clusters, UpdateClusters &update_clusters, UpdateClusterPopulation &update_cluster_population, int subset_count, distribution_t &likelihood)
 
void run (dataset_t &dataset, int T)
 
const membertrixgetMembershipMatrix () const
 
const membertrixgetMaxLikelihoodMatrix () const
 

Protected Member Functions

void considerMaxLikelihood ()
 

Detailed Description

The MCMC class can be equiped with InitCluster, UpdateCluster, and UpdateClusterPopulation objects that each will be used in a Monte-Carlo Monte Chain algorithm. This algorithm is run for T steps and returns a membership matrix in the form of a membertrix object.

Constructor & Destructor Documentation

◆ MCMC()

MCMC::MCMC ( std::default_random_engine &  generator,
InitClusters init_clusters,
UpdateClusters update_clusters,
UpdateClusterPopulation update_cluster_population,
int  subset_count,
distribution_t &  likelihood 
)

Constructor for MCMC.

Parameters
[in]generatorA random number generator
[in]init_clustersAn object that initializes clusters
[in]update_clustersAn object that updates the cluster parameters
[in]update_cluster_populationAn object that generates and removes clusters

Member Function Documentation

◆ considerMaxLikelihood()

void MCMC::considerMaxLikelihood ( )
protected

Calculate maximum likelihood of current assignments

[out] _max_likelihood_membertrix The max likelihood membership matrix up to now [out] _max_likelihood The max likelihood up to now

◆ getMaxLikelihoodMatrix()

const membertrix & MCMC::getMaxLikelihoodMatrix ( ) const

◆ getMembershipMatrix()

const membertrix & MCMC::getMembershipMatrix ( ) const

The results of the MCMC algorithm is a membership matrix.

Returns
The membership matrix (const)

◆ run()

void MCMC::run ( dataset_t dataset,
int  T 
)

Run the MCMC method (can be one or multiple chains) for T steps.

Parameters
[in]datasetThe dataset to run the MCMC on
[in]TThe number of steps

The documentation for this class was generated from the following files: