noparama  v0.0.1
Nonparametric Bayesian models
Classes | Typedefs | Enumerations
membertrix.h File Reference
#include <Eigen/Dense>
#include "np_data.h"
#include "np_cluster.h"
#include <map>
#include <unordered_map>
Include dependency graph for membertrix.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  membertrix
 

Typedefs

typedef std::unordered_map< cluster_id_t, cluster_t * > clusters_t
 Hashmap for the cluster indices and cluster objects. More...
 
typedef std::unordered_map< cluster_id_t, dataset_t * > clusters_dataset_t
 A dataset per cluster. More...
 
typedef Eigen::Matrix< bool, Eigen::Dynamic, Eigen::Dynamic > binary_matrix_t
 

Enumerations

enum  np_error_t { error_none, error_already_assigned, error_assignment_remaining, error_assignment_absent }
 

Typedef Documentation

◆ binary_matrix_t

typedef Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic> binary_matrix_t

The binary matrix is currently defined as a dense matrix. This needs actually some profiling to know if a sparse matrix is faster. Namely, the content of the matrix is sparse with one non-false value per row. However, for now a dense matrix is used, because it is assumed that how rows and columns are accessed favors a dense matrix.

◆ clusters_dataset_t

typedef std::unordered_map<cluster_id_t, dataset_t*> clusters_dataset_t

A dataset per cluster.

◆ clusters_t

typedef std::unordered_map<cluster_id_t, cluster_t*> clusters_t

Hashmap for the cluster indices and cluster objects.

Enumeration Type Documentation

◆ np_error_t

enum np_error_t
Enumerator
error_none 
error_already_assigned 
error_assignment_remaining 
error_assignment_absent