noparama  v0.0.1
Nonparametric Bayesian models
Enumerations | Functions
np_main.cpp File Reference
#include <iostream>
#include <fstream>
#include <chrono>
#include <iomanip>
#include <unordered_map>
#include <unistd.h>
#include <experimental/filesystem>
#include <np_mcmc.h>
#include <np_data.h>
#include <np_results.h>
#include <membertrix.h>
#include <statistics/scalarnoise_multivariatenormal.h>
#include <statistics/multivariatenormal.h>
#include <statistics/dirichlet.h>
#include <statistics/normalinvwishart.h>
#include <statistics/normalinvgamma.h>
#include <np_neal_algorithm2.h>
#include <np_neal_algorithm8.h>
#include <np_jain_neal_algorithm.h>
#include <np_triadic_algorithm.h>
#include <pretty_print.hpp>
Include dependency graph for np_main.cpp:

Enumerations

enum  algorithm_t { algorithm2, algorithm8, jain_neal_split, triadic }
 

Functions

void disp_help (std::string appname)
 
int main (int argc, char *argv[])
 

Enumeration Type Documentation

◆ algorithm_t

Enumerator
algorithm2 
algorithm8 
jain_neal_split 
triadic 

Function Documentation

◆ disp_help()

void disp_help ( std::string  appname)

◆ main()

int main ( int  argc,
char *  argv[] 
)

With the dataset twogaussians it is important to realize that this did not originate from a Dirichlet process. Even if alpha is chosen to be very low (say 0.0001), there will be multiple clusters generated, not just two. The purity will be quite high (very few misclassifications) but the specificity is low (identification of multiple clusters where there is only one).