noparama
v0.0.1
Nonparametric Bayesian models
|
#include <iostream>
#include <fstream>
#include <chrono>
#include <iomanip>
#include <unordered_map>
#include <unistd.h>
#include <experimental/filesystem>
#include <np_mcmc.h>
#include <np_data.h>
#include <np_results.h>
#include <membertrix.h>
#include <statistics/scalarnoise_multivariatenormal.h>
#include <statistics/multivariatenormal.h>
#include <statistics/dirichlet.h>
#include <statistics/normalinvwishart.h>
#include <statistics/normalinvgamma.h>
#include <np_neal_algorithm2.h>
#include <np_neal_algorithm8.h>
#include <np_jain_neal_algorithm.h>
#include <np_triadic_algorithm.h>
#include <pretty_print.hpp>
Enumerations | |
enum | algorithm_t { algorithm2, algorithm8, jain_neal_split, triadic } |
Functions | |
void | disp_help (std::string appname) |
int | main (int argc, char *argv[]) |
enum algorithm_t |
void disp_help | ( | std::string | appname | ) |
int main | ( | int | argc, |
char * | argv[] | ||
) |
With the dataset twogaussians it is important to realize that this did not originate from a Dirichlet process. Even if alpha is chosen to be very low (say 0.0001), there will be multiple clusters generated, not just two. The purity will be quite high (very few misclassifications) but the specificity is low (identification of multiple clusters where there is only one).